On Pure and (Approximate) Strong Equilibria of Facility Location Games

نویسندگان

  • Thomas Dueholm Hansen
  • Orestis Telelis
چکیده

We study social cost losses in Facility Location games, where n selfish agents install facilities over a network and connect to them, so as to forward their local demand (expressed by a nonnegative weight per agent). Agents using the same facility share fairly its installation cost, but every agent pays individually a (weighted) connection cost to the chosen location. We study the Price of Stability (PoS) of pure Nash equilibria and the Price of Anarchy of strong equilibria (SPoA), that generalize pure equilibria by being resilient to coalitional deviations. A special case of recently studied network design games, Facility Location merits separate study as a classic model with numerous applications and individual characteristics: our analysis for unweighted agents on metric networks reveals constant upper and lower bounds for the PoS, while anO(lnn) upper bound implied by previous work is tight for non-metric networks. Strong equilibria do not always exist, even for the unweighted metric case. We show that e-approximate strong equilibria exist (e = 2.718 . . .). The SPoA is generally upper bounded by O(lnW) (W is the sum of agents’ weights), which becomes tight Θ(lnn) for unweighted agents. For the unweighted metric case we prove a constant upper bound. We point out several challenging open questions that arise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Bounds for Facility Location Games with Fair Cost Allocation

We study Facility Location games played by n agents situated on the nodes of a graph. Each agent orders installation of a facility at a node of the graph and pays connection cost to the chosen node, and shares fairly facility installation cost with other agents having chosen the same location. This game has pure strategy Nash equilibria, that can be found by simple improvements performed by the...

متن کامل

Non-cooperative Facility Location and Covering Games

We study a general class of non-cooperative games coming from combinatorial covering and facility location problems. A game for k players is based on an integer programming formulation. Each player wants to satisfy a subset of the constraints. Variables represent resources, which are available in costly integer units and must be bought. The cost can be shared arbitrarily between players. Once a...

متن کامل

Strategic Cooperation in Cost Sharing Games

In this paper we consider strategic cost sharing games with so-called arbitrary sharing based on various combinatorial optimization problems, such as vertex and set cover, facility location, and network design problems. We concentrate on the existence and computational complexity of strong equilibria, in which no coalition can improve the cost of each of its members. Our main result reveals a c...

متن کامل

Computing Pure Nash and Strong Equilibria in Bottleneck Congestion Games

Bottleneck congestion games properly model the properties of many real-world network routing applications. They are known to possess strong equilibria – a strengthening of Nash equilibrium to resilience against coalitional deviations. In this paper, we study the computational complexity of pure Nash and strong equilibria in these games. We provide a generic centralized algorithm to compute stro...

متن کامل

Shapley Facility Location Games

Facility location games have been a topic of major interest in economics, operations research and computer science, starting from the seminal work by Hotelling. Spatial facility location models have successfully predicted the outcome of competition in a variety of scenarios. In a typical facility location game, users/customers/voters are mapped to a metric space representing their preferences, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008